Part Number Hot Search : 
EDZ12B NJU7332 64001 LT347 725UY3 DTA123E 160808 HVP16
Product Description
Full Text Search
 

To Download MD56V62160H Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 E2G1052-17-X1
Semiconductor MD56V62160/H
Semiconductor
This version: Mar. 1998 MD56V62160/H
Pr el im in ar y
4-Bank 1,048,576-Word 16-Bit SYNCHRONOUS DYNAMIC RAM
DESCRIPTION
The MD56V62160/H is a 4-bank 1,048,576-word 16-bit synchronous dynamic RAM, fabricated in Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The inputs and outputs are LVTTL compatible.
FEATURES
* * * * * * * Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell 4-bank 1,048,576-word 16-bit configuration 3.3 V power supply, 0.3 V tolerance Input : LVTTL compatible Output : LVTTL compatible Refresh : 4096 cycles/64 ms Programmable data transfer mode - CAS latency (2, 3) - Burst length (2, 4, 8) - Data scramble (sequential, interleave) * CBR auto-refresh, Self-refresh capability * Package: 54-pin 400 mil plastic TSOP (Type II) (TSOPII54-P-400-0.80-K) (Product : MD56V62160/H-xxTA) xx indicates speed rank.
PRODUCT FAMILY
Family MD56V62160-10 MD56V62160-12 MD56V62160H-15 Max. Frequency 100 MHz 83 MHz 66 MHz Access Time (Max.) tAC2 9 ns 14 ns 9 ns tAC3 9 ns 10 ns 9 ns
1/28
Semiconductor PIN CONFIGURATION (TOP VIEW)
VCC DQ1 VCCQ DQ2 DQ3 VSSQ DQ4 DQ5 VCCQ DQ6 DQ7 VSSQ DQ8 VCC LDQM WE CAS RAS CS A13/BA0 A12/BA1 A10 A0 A1 A2 A3 VCC
1 2 3 4 5 6 7 8 9
MD56V62160/H

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
54 VSS 53 DQ16 52 VSSQ 51 DQ15 50 DQ14 49 VCCQ 48 DQ13 47 DQ12 46 VSSQ 45 DQ11 44 DQ10 43 VCCQ 42 DQ9 41 VSS 40 NC 39 UDQM 38 CLK 37 CKE 36 NC 35 A11 34 A9 33 A8 32 A7 31 A6 30 A5 29 A4 28 VSS
54-Pin Plastic TSOP (II) (K Type)
Pin Name CLK CS CKE A0 - A11 A12, A13 RAS CAS WE
Function System Clock Chip Select Clock Enable Address Bank Select Address Row Address Strobe Column Address Strobe Write Enable
Pin Name DQi VCC VSS VCCQ VSSQ NC
Function Data Input/Output Power Supply (3.3 V) Ground (0 V) Data Output Power Supply (3.3 V) Data Output Ground (0 V) No Connection
UDQM, LDQM Data Input/Output Mask
Note:
The same power supply voltage must be provided to every VCC pin and VCCQ pin. The same GND voltage level must be provided to every VSS pin and VSSQ pin.
2/28
Semiconductor
MD56V62160/H
PIN DESCRIPTION
CLK CS CKE Fetches all inputs at the "H" edge. Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE, UDQM and LDQM. Masks system clock to deactivate the subsequent CLK operation. If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is deactivated. CKE should be asserted at least one cycle prior to a new command. Address Row & column multiplexed. Row address: RA0 - RA11 Column address: CA0 - CA7 A12, A13 (BA1, BA0) RAS CAS WE UDQM, LDQM Masks the read data of two clocks later when UDQM and LDQM are set "H" at the "H" edge of the clock signal. Masks the write data of the same clock when UDQM and LDQM are set "H" at the "H" edge of the clock signal. UDQM controls upper byte and LDQM controls lower byte. DQi Data inputs/outputs are multiplexed on the same pin. Functionality depends on the combination. For details, see the function truth table. Bank Access pins. These pins are dedicated to select one of 4 banks.
3/28
Semiconductor BLOCK DIAGRAM
MD56V62160/H
CLK CKE
CLOCK BUFFER Command Decoding Logic Command Buffers Control Logic
A0 A13
Address Buffers
Mode Register
Latency & Burst controller
Column Address Latches & Counter
Column Decoders Sense Amplifiers
CS RAS CAS WE UDQM LDQM
Row Address Latches & Refresh Counter Row Decoders Word Drivers
Memory Cells
BANK A BANK B BANK C BANK D Input Buffers Input Data Register
DQ1 - DQ16 Output Data Register
Output Buffers
4/28
Semiconductor
MD56V62160/H
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
Parameter Voltage on Any Pin Relative to VSS VCC Supply Voltage Storage Temperature Power Dissipation Short Circuit Current Operating Temperature Symbol VIN, VOUT VCC, VCCQ Tstg PD* IOS Topr Rating -0.5 to VCC + 0.5 -0.5 to 4.6 -55 to 150 1 50 0 to 70 (Voltages referenced to VSS) Unit V V C W mA C
*: Ta = 25C Recommended Operating Conditions
Parameter Power Supply Voltage Input High Voltage Input Low Voltage Symbol VCC, VCCQ VIH VIL Min. 3.0 2.0 -0.3 Typ. 3.3 -- -- (Voltages referenced to VSS = 0 V) Max. 3.6 VCC + 0.3 0.8 Unit V V V
Capacitance
(VCC = 3.3 V 0.3 V, Ta = 25C, f = 1 MHz) Parameter Input Capacitance (A0 - A13) Input Capacitance (CLK, CKE, CS, RAS, CAS, WE, UDQM, LDQM) Input/Output Capacitance (DQ1 - DQ16) Symbol CIN1 CIN2 COUT Min. 2 2 2 Max. 5 5 7 Unit pF pF pF
5/28
Semiconductor DC Characteristics
Condition Parameter Symbol CKE -- -- -- -- CKE VIH Others IOH = -2 mA IOL = 2 mA -- -- tCC = min tRC = min No Burst tCC = min tCC = min -- CKE VIH tCC = min -- ICC4 ICC5 CKE VIH CKE VIH tCC = min tCC = min tRC = min tCC = min -- ICC7 CKE VIL tCC = min -- 2 -- 2 2 -- 2 95 -- 85 15 -- 15
MD56V62160/H
Output High Voltage VOH Output Low Voltage Input Leakage Current Output Leakage Current Average Power Supply Current (Operating) Power Supply Current (Stand by) VOL ILI ILO ICC1
Version H-15 Unit Note -10 -12 Min. Max.Min. Max. Min. Max. 2.4 -- 2.4 -- 2.4 -- V -- 0.4 -- 0.4 -- 0.4 V mA mA -10 10 -10 10 -10 10 -10 10 -10 10 -10 10
-- 145 -- 125 -- 120 mA 1, 2 -- 40 -- 35 -- 30 mA 3
ICC2
CKE VIH CKE VIL
Average Power ICC3S Supply Current (Clock Suspension) Average Power Supply Current (Active Stand by) Power Supply Current (Burst) Power Supply Current (Auto-Refresh) Average Power Supply Current (Self-Refresh) Average Power Supply Current (Power down) ICC3
--
15 mA
2
--
75 mA
3
-- 210 -- 180 -- 160 mA 1, 2
-- 185 -- 155 -- 155 mA
2
ICC6
CKE VIL
--
2
mA
--
2
mA
Notes:
1. Measured with outputs open. 2. The address and data can be changed once or left unchanged during one cycle. 3. The address and data can be changed once or left unchanged during two cycles.
6/28
Semiconductor
MD56V62160/H
Mode Set Address Keys
CAS Latency A6 0 0 0 0 1 1 1 1 A5 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 CL Reserved Reserved 2 3 Reserved Reserved Reserved Reserved 0 1 Burst Type A3 BT Sequential Interleave A2 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1 Burst Length A0 0 1 0 1 0 1 0 1 BT = 0 2 4 8 BT = 1 2 4 8 Reserved Reserved
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Note:
A7, A8, A9, A10, A11, A12 and A13 should stay "L" during mode set cycle.
POWER ON SEQUENCE 1. With inputs in NOP state, turn on the power supply and start the system clock. 2. After the VCC voltage has reached the specified level, pause for 200 ms or more with the input kept in NOP state. 3. Issue the precharge all bank command. 4. Apply a CBR auto-refresh eight or more times. 5. Enter the mode register setting command.
7/28
Semiconductor AC Characteristics
Parameter Clock Cycles Time CL = 3 CL = 2 Symbol tCC tAC tCH tCL tSI tHI tOLZ tOHZ tOH tRC tRP tRAS tRCD tWR tRRD tREF tT lCCD lCKE lDOZ lDOD lDWD MD56V62160-10 Min. 10 15 -- -- 3 3 3 1 3 -- 3 90 30 60 30 15 20 -- -- 1 1 2 0 0 2 3 2 Max. -- -- 9 9 -- -- -- -- -- 8 -- -- -- 105 -- -- -- 64 -- 3
MD56V62160/H
Note 1, 2 MD56V62160-12 MD56V62160H-15 Min. 12 17.5 -- -- 3 3 3 1.5 3 -- 3 115 45 70 35 24 24 -- tSI + 1 CLK -- 1 1 2 0 0 2 3 2 Max. -- -- 10 14 -- -- -- -- -- 10 -- -- -- 105 -- -- -- 64 -- 3 Min. 15 15 -- -- 3 3 3 1 3 -- 3 105 30 70 30 15 24 -- tSI + 1 CLK -- 1 1 2 0 0 2 3 2 Max. -- -- 9 9 -- -- -- -- -- 8 -- -- -- 105 -- -- -- 64 -- 3 Unit Note ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ms ns ns Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle 3 3, 4 3, 4
Access Time from CL = 3 Clock CL = 2 Clock "H" Pulse Time Clock "L" Pulse Time Input Setup Time Input Hold Time Output Low Impedance Time from Clock Output High Impedance Time from Clock Output Hold from Clock RAS Cycle Time RAS Precharge Time RAS Active Time RAS to CAS Delay Time Write Recovery Time RAS to RAS Bank Active Delay Time Refresh Time Power-down Exit Set-up Time Input Level Transition Time CAS to CAS Delay Time (Min.) Clock Disable Time from CKE Data Output High Impedance Time from UDQM, LDQM Data Input Mask Time from UDQM, LDQM Data Input Time from Write Command
tPDE tSI + 1 CLK
Data Output High Impedance l Time from Precharge Command ROH Active Command Input Time from Mode Register Set Command Input (Min.) Write Command Input Time from Output lMRD lOWD
8/28
Semiconductor Notes : 1. AC measurements assume that tT = 1 ns. 2. The reference level for timing of input signals is 1.4 V. 3. Output load.
1.4 V Z = 50 W Output 50 pF 50 W
MD56V62160/H
4. The access time is defined at 1.4 V. 5. If tT is longer than 1 ns, then the reference level for timing of input signals is VIH and VIL.
9/28
Semiconductor TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CLK
CKE CS RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
, , ,, ,
MD56V62160/H
15 16 17 18 19
tRC
tRP
tRCD
Ra
Ca0
Rb
Cb0
Ra
Rb
tOH
Qa0
Qa1
Qa2
Qa3
Db0
Db1
Db2
Db3
tAC
tOHZ
tWR
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
10/28
Semiconductor
MD56V62160/H
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
,,, ,,
tCC tCL CKE CS High tHI tSI RAS tSI tHI lCCD CAS tSI tSI tSI ADDR
Ra Ca Cb Cc
tHI
tHI
A13
A12
A10 DQ
Ra
tAC
tHI
Qa
Db
Qc
tOLZ
tSI
tOH tOHZ lOWD
tHI
WE
tSI
UDQM, LDQM
Row Active
Write Command
Precharge Command
Read Command
Read Command
11/28
Semiconductor *Notes:
MD56V62160/H
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE, UDQM, and LDQM are invalid. 2. When issuing an active, read or write command, the bank is selected by A12 and A13. A12 0 0 1 1 A13 0 1 0 1 Active, read or write Bank A Bank B Bank C Bank D
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command is issued. A10 0 1 0 1 0 1 0 1 A12 0 0 0 0 1 1 1 1 A13 0 0 1 1 0 0 1 1 Operation After the end of burst, bank A holds the idle status. After the end of burst, bank A is precharged automatically. After the end of burst, bank B holds the idle status. After the end of burst, bank B is precharged automatically. After the end of burst, bank C holds the idle status. After the end of burst, bank C is precharged automatically. After the end of burst, bank D holds the idle status. After the end of burst, bank D is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A10, A12 and A13 inputs.
A10 0 0 0 0 1
A12 0 0 1 1 X
A13 0 1 0 1 X
Operation Bank A is precharged. Bank B is precharged. Bank C is precharged. Bank D is precharged. All banks are precharged.
5. The input data and the write command are latched by the same clock (Write latency = 0). 6. The output is forced to high impedance by (1 CLK + tOHZ) after UDQM, LDQM entry.
12/28
Semiconductor
MD56V62160/H
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CLK
CKE CS
RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
*Notes:
, , , ,, , ,, , , , , ,
17 18 19
High
Bank A Active
lCCD
Ca0
Cb0
Cc0
Cd0
Qa0
Qa1
Qb0 Qb1
Dc0
Dc1
Dd0
lOWD
tWR *Note2
*Note1
Read Command
Read Command
Write Command
Write Command
Precharge Command
1. To write data before a burst read ends, UDQM and LDQM should be asserted three cycles prior to the write command to avoid bus contention. 2. To assert row precharge before a burst write ends, wait tWR after the last write data input. Input data during the precharge input cycle will be masked internally.
13/28
,,,, , , ,
Semiconductor MD56V62160/H Read & Write Cycle with Auto Precharge @ Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
CKE CS
High
RAS
tRRD
CAS
ADDR
RAa
RDb CAa
CDb
A13
A12
A10 WE
RAa
RDb
CAS Latency = 2
DQ
QAa0 QAa1 QAa2 QAa3
DDb0 DDb1 DDb2 DDb3
UDQM, LDQM
A-Bank Precharge Start
CAS Latency = 3
DQ
QAa0 QAa1 QAa2 QAa3
DDb0 DDb1 DDb2 DDb3
A-Bank Precharge Start
tWR
UDQM, LDQM
Row Active (A-Bank)
A Bank Read with Auto Precharge Row Active (D-Bank)
D Bank Write with Auto Precharge
D Bank Precharge Start Point
14/28
Semiconductor
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
CLK
CKE CS RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
, , , , , ,,
MD56V62160/H
18 19
High
tRC
tRRD
RAa
CAa
RCb
CCb
RAc
CAc
RAa
RCb
RAc
QAa0 QAa1 QAa2 QAa3
QCb0 QCb1 QCb2 QCb3
QAc0 QAc1 QAc2 QAc3
Row Active (A-Bank)
Read Command (A-Bank)
Read Command (C-Bank)
Read Command (A-Bank)
Row Active (C-Bank)
Precharge Command (A-Bank)
Precharge Command (C-Bank) Row Active (A-Bank)
15/28
Semiconductor
MD56V62160/H
,,,, , , , ,,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A13
A12
A10 DQ
RAa
RBb
RAc
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
UDQM, LDQM
Row Active (A-Bank)
Row Active (B-Bank)
Write Command (A-Bank)
Precharge Command (A-Bank) Write Command (B-Bank)
Write Command (A-Bank)
Row Active (A-Bank)
Precharge Command (A-Bank)
Precharge Command (B-Bank)
16/28
Semiconductor
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CLK
CKE CS
RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
*Note:
, ,,, , ,
MD56V62160/H
16 17 18 19
High
*Note1
RAa
CAa
RCb
CCb
CAc
CCd
CAe
RAa
RCa
QAa0 QAa1 QAa2 QAa3 QCb0 QCb1 QCb2 QCb3 QAc0 QAc1 QCd0 QCd1 QAe0 QAe1
lROH
Row Active (A-Bank)
Row Active (C-Bank)
Read Command (C-Bank)
Precharge Command (A-Bank)
Read Command (A-Bank)
Read Command (C-Bank)
Read Command (A-Bank)
Read Command (A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
17/28
, ,, ,, , , , , ,
Semiconductor MD56V62160/H Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
CKE CS
High
RAS
CAS
ADDR
RBa
CBa
RDb
CDb
CBc
CDd
A13
A12
A10 DQ
RBa
RDb
DBa0 DBa1 DBa2 DBa3 DDb0 DDb1 DDb2 DDb3 DBc0 DBc1 DDd0
WE
UDQM, LDQM
Row Active (B-Bank)
Row Active (D-Bank)
Write Command (D-Bank)
Write Command (B-Bank)
Write Command (D-Bank)
Write Command (B-Bank)
Precharge Command (All Banks)
18/28
Semiconductor
MD56V62160/H
, , , , ,
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RCb
CCb
RAc
CAc
A13
A12
A10 DQ
RAa
RCb
RAc
QAa0 QAa1 QAa2 QAa3
DCb0 DCb1 DCb2 DCb3
QAc0 QAc1 QAc2 QAc3
WE
UDQM, LDQM
Row Active (A-Bank)
Row Active (C-Bank)
Write Command (C-Bank)
Read Command (A-Bank)
Read Command (A-Bank)
Precharge Command (A-Bank)
Row Active (A-Bank)
19/28
Semiconductor
MD56V62160/H
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK High
CKE CS RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
,, ,,,, ,
CAa0 CDb0 CAc0 QAa0 QAa1 QAa2 QAa3 DDb0 DDb1 DDb2 DDb3 QAc0 QAc1 QAc2 QAc3 Read Command (A-Bank) Write Command (D-Bank) Read Command (A-Bank)
20/28
Semiconductor
MD56V62160/H
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
*Note1
*Note1
CKE CS RAS
CAS
ADDR
Ra
Ca
Cb
Cc
A13
A12
A10 DQ1 - 8
Ra
Qa0
Qa1
Qa2
Qb0
Qb1
Dc0
Dc2
*Note4 DQ9 - 16
tOHZ
tOHZ
*Note3
Dc1
Qa0
Qa2
Qa3
Qb0
Qb1
Dc0
*Note2
WE
LDQM
*Note4 UDQM
Row Active
Read DQM Read Command
CLOCK Suspension
Read Command
CLK
*Notes:
, , , , , , ,
Read DQM Read DQM Write DQM Write CLOCK Command Suspension Write DQM
1. 2. 3. 4.
When Clock Suspension is asserted, the next clock cycle is ignored. When LDQM and UDQM are asserted, the read data after two clock cycles is masked. When LDQM and UDQM are asserted, the write data in the same clock cycle is masked. When LDQM is set High, the input/output data of DQ1 - DQ8 is masked. When UDQM is set High, the input/output data of DQ9 - DQ16 is masked.
21/28
Semiconductor Read Interruption by Precharge Command @ Burst Length = 8
0 1 2 3 4 5 6 7 8 9 10 11 12
MD56V62160/H
CLK
CKE CS RAS
CAS
ADDR
A13
A12
A10 WE
CAS Latency = 2
DQ
UDQM, LDQM
CAS Latency = 3
DQ
UDQM, LDQM
*Note:
1. If row precharge is asserted before burst read ends, then the read data will not output after the second clock cycle of the precharge command.
,, ,,, ,, ,, ,
13 14 15 16 17 18 19
High
Ra
Ca
Ra
*Note1
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
*Note1
Qa0
Qa1
Qa2
Qa3
Qa4
Row Active
Read Command
Precharge Command
22/28
, , , ,,
Semiconductor MD56V62160/H Power Down Mode @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
tSI *Note1
tPDE *Note2
tSI
CKE CS
tSI
RAS
CAS
ADDR
Ra
Ca
A13
A12
A10 DQ
Ra
Qa0
Qa1
Qa2
WE
UDQM, LDQM
Row Active
Power-down Entry
Power-down Exit
Clock Suspention Entry
Clock Suspention Exit Read Command
Precharge Command
*Notes:
1. When all banks are in precharge state, and if CKE is set low, then the MD56V62160/H enters power-down mode and maintains the mode while CKE is low. 2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1 CLK).
23/28
Semiconductor Self Refresh Cycle
0 1 2
CLK
CKE CS RAS
CAS
ADDR
A13
A12
A10 DQ
WE
UDQM, LDQM
, ,,, ,, ,,
MD56V62160/H
tRC tSI
Ra BS BS Ra
Hi - Z
Hi - Z
Self Refresh Entry
Self Refresh Exit
Row Active
24/28
Semiconductor Mode Register Set Cycle
0 1 2 3 4 5 6
MD56V62160/H Auto Refresh Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12
CLK
CKE CS RAS
CAS
ADDR
DQ
WE
UDQM, LDQM
,, ,,, ,
High High lMRD tRC
key Ra
Hi - Z
Hi - Z
MRS
New Command
Auto Refresh
Auto Refresh
25/28
Semiconductor
MD56V62160/H
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 CS RAS CAS WE BA Idle H L L L L L L L Row Active H L L L L L L Read H L L L L L L L Write H L L L L L L L Read with Auto Precharge H L L L L L L Write with Auto Precharge H L L L L L L X H H H L L L L X H H H L L L X H H H H L L L X H H H H L L L X H H H H L L X H H H H L L X H H L H H L L X H L L H H L X H H L L H H L X H H L L H H L X H H L L H L X H H L L H L X H L X H L H L X X H L H L X X H L H L H L X X H L H L H L X X H L H L X X X H L H L X X X X BA BA BA BA X L X X BA BA BA BA X X X BA BA BA BA BA X X X BA BA BA BA BA X X X BA BA X BA X X X BA BA X BA X ADDR X X X CA RA A10 X OP Code X X CA, A10 CA, A10 RA A10 X X X X CA, A10 CA, A10 RA A10 X X X X CA, A10 CA, A10 RA A10 X X X X CA, A10 X RA, A10 X X X X CA, A10 X RA, A10 X NOP NOP ILLEGAL 2 ILLEGAL 2 Row Active NOP 4 Auto-Refresh or Self-Refresh 5 Mode Register Write NOP NOP Read Write ILLEGAL 2 Precharge ILLEGAL NOP (Continue Row Active after Burst ends) NOP (Continue Row Active after Burst ends) Reserved Term Burst, start new Burst Read Term Burst, start new Burst Write ILLEGAL 2 Term Burst, execute Row Precharge ILLEGAL NOP (Continue Row Active after Burst ends) NOP (Continue Row Active after Burst ends) Reserved (Term Burst) --> Row Active Term Burst, start new Burst Read Term Burst, start new Burst Write ILLEGAL 2 Term Burst, execute Row Precharge ILLEGAL NOP (Continue Burst to End and enter Row Precharge) NOP (Continue Burst to End and enter Row Precharge) ILLEGAL 2 ILLEGAL 2 ILLEGAL ILLEGAL 2 ILLEGAL NOP (Continue Burst to End and enter Row Precharge) NOP (Continue Burst to End and enter Row Precharge) ILLEGAL 2 ILLEGAL 2 ILLEGAL ILLEGAL 2 ILLEGAL Action
26/28
Semiconductor
MD56V62160/H
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA Precharge H L L L L L L Write Recovery H L L L L L L Row Active H L L L L L L Refresh H L L L L Mode Register Access H L L L L ABBREVIATIONS RA = Row Address CA = Column Address Notes: X H H H L L L X H H H L L L X H H H L L L X H H L L X H H H L X H H L H H L X H H L H H L X H H L H H L X H L H L X H H L X X H L X H L X X H L X H L X X H L X H L X X X X X X X H L X X X X BA BA BA BA X X X BA BA BA BA X X X BA BA BA BA X X X X X X X X X X X ADDR X X X CA RA A10 X X X X CA RA A10 X X X X CA RA A10 X X X X X X X X X X X NOP --> Idle after tRP NOP --> Idle after tRP ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 NOP 4 ILLEGAL NOP NOP ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL NOP --> Row Active after tRCD NOP --> Row Active after tRCD ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL NOP --> Idle after tRC NOP --> Idle after tRC ILLEGAL ILLEGAL ILLEGAL NOP NOP ILLEGAL ILLEGAL ILLEGAL Action
BA = Bank Address AP = Auto Precharge
NOP = No OPeration command
1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs. 2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection. 3. Satisfy the timing of tCCD and tWR to prevent bus contention. 4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10. 5. Illegal if any bank is not idle.
27/28
Semiconductor
MD56V62160/H
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1 Self Refresh H L L L L L L Power Down H L L L L L L All Banks Idle (ABI)
6
CKEn X H H H H H L X H H H H H L H L L L L L L L L H L H L
CS RAS CAS WE X H L L L L X X H L L L L X X H L L L L L L X X X X X X X H H H L X X X H H H L X X X H H H L L L X X X X X X X H H L X X X X H H L X X X X H H L H L L X X X X X X X H L X X X X X H L X X X X X H L X L H L X X X X X
ADDR X X X X X X X X X X X X X X X X X X X X X X X X X X X INVALID
Action Exit Self Refresh --> ABI Exit Self Refresh --> ABI ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Self Refresh) INVALID Exit Power Down --> ABI Exit Power Down --> ABI ILLEGAL ILLEGAL ILLEGAL 6 NOP (Continue power down mode) Refer to Table 1 Enter Power Down Enter Power Down ILLEGAL ILLEGAL ILLEGAL Enter Self Refresh ILLEGAL NOP Refer to Operations in Table 1 Begin Clock Suspend Next Cycle Enable Clock of Next Cycle Continue Clock Suspension
H H H H H H H H L
Any State Other than Listed Above
H H L L
Note:
6. Power-down and self refresh can be entered only when all the banks are in an idle state.
28/28


▲Up To Search▲   

 
Price & Availability of MD56V62160H

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X